Mechanical blood-tissue interaction in contracting muscles: a model study.
نویسندگان
چکیده
A finite element (FE) model of blood perfused biological tissue has been developed. Blood perfusion is described by fluid flow through a series of 5 intercommunicating vascular compartments that are embedded in the tissue. Each compartment is characterized by a blood flow permeability tensor, blood volume fraction and vessel compliance. Local non-linear relationships between intra-extra vascular pressure difference and blood volume fraction, and between blood volume fraction and the permeability tensor, are included in the FE model. To test the implementation of these non-linear relations, FE results of blood perfusion in a piece of tissue that is subject to increased intramuscular pressure, are compared to results that are calculated with a lumped parameter (LP) model of blood perfusion. FE simulation of blood flow through a contracting rat calf muscle is performed. The FE model used in this simulation contains a transversely isotropic, non-linearly elastic description of deforming muscle tissue, in which local contraction stress is prescribed as a function of time. FE results of muscle tension, total arterial inflow and total venous outflow of the muscle during contraction, correspond to experimental results of an isometrically and tetanically contracting rat calf muscle.
منابع مشابه
Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملVibration Analysis of Carotid Arteries Conveying Non-Newtonian Blood Flow Surrounding by Tissues
The high blood rate that often occurs in arteries may play a role in artery failure and tortuosity which leads to blackouts, transitory ischemic attacks and other diseases. However, vibration and instability analysis of carotid arteries are lacking. The objective of this study is to investigate the vibration and instability of the carotid arteries conveying blood under axial tension with surrou...
متن کاملRegulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs.
This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values chang...
متن کاملUniversity and industry: From contracting relations to strategic partnerships; providing strategic role model in university-society relations
Establishing sustainable and effective interactions between university and society has always been a concern for higher education system. However, these interactions have always been challenged for various reasons. The reasons can be attributed to the type of attitudes toward the roles a university plays in interaction with industry, the lack of value-added strategic interactions with industry,...
متن کاملArterial Blood Flow Blockage Time Due to an Interaction between a Foreign Second Phase and an Externally Originated Particle
A huge number of deaths in the world are the direct or indirect consequence of a disease which is called atherosclerosis. The disease could be due to an artery blockage by the interaction of an externally second phase with a particle which is entered to the bloodstream. The effect of some most important physical and geometrical affecting parameters on the blockage time of a microchannel due to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 31 5 شماره
صفحات -
تاریخ انتشار 1998